سال ها پیش در یکی از کلاس های ریاضیات مدارس آلمان، آموزگار برای اینکه مدتی بچه ها را سرگرم کند...
سال ها پیش در یکی از کلاس های ریاضیات مدارس آلمان، آموزگار برای اینکه مدتی بچه ها را سرگرم کند و به کارش برسد؛ از آنها خواست تا مجموع اعداد از یک تا صد را حساب کنند. پس از چند دقیقه یکی از شاگردان کلاس گفت: مجموع این اعداد را پیدا کرده و حاصل عدد ۵۰۵۰ می شود. با شنیدن این عدد معلم با حیرت فراوان او را به پای تخته برد تا روش محاسبه خود را توضیح دهد. به نظر شما این شاگرد باهوش که بعدها یکی از بزرگ ترین و معروف ترین ریاضیدانان دنیا شد، چه روشی را به کار بست؟ او اعداد یک تا صد را به ردیف پشت سرهم نوشت، سپس بار دیگر همین اعداد را بالعکس، این بار از صدتا یک، درست در ردیف زیرین اعداد قبلی نوشت. طوری که هر عدد زیر عدد ردیف بالاتر قرار گرفت.وی مشاهده کرد که مجموع هر کدام از ستون های به وجود آمده ۱۰۱ است. سپس نتیجه گرفت که صد تا عدد ۱۰۱ داریم که حاصل مجموع آنها می شود ۱۰۱۰۰=۱۰۱*۱۰۰. پس از آن تنها کافی بود که این مجموع به دست آمده نصف شود یعنی:
۵۰۵۰=2/10100
شاید «شارل فردریک گاوس» شاگرد با ذکاوت کلاس که این روش جالب را به کاربرد، آن هنگام نمی دانست، روش بسیار کارا و مفیدی را برای جمع بستن رشته ای از اعداد ارائه داده است که تا سالیان سال مورد استفاده ریاضیدانان خواهد بود
در گذشته های دور، یکی از پادشاهان هندوستان به ازای یاد دادن سرگرمی خوبی به او، جایزه بزرگی تعیین کرد. می دانید که هندی ها در ابداع و اختراع روابط شگفت انگیز بین اعداد بسیار توانا هستند و تاریخچه بلندی در این زمینه دارند. روزی یکی از همین دانشمندان متبحر کار با اعداد، نزد پادشاه رفت و بازی شطرنج را به او آموخت. کسی چه می داند، شاید بازی شطرنج از همان زمان اختراع شده باشد.این مرد زیرک به ازای سرگرمی خوبی که به پادشاه آموخته بود از وی خواست تا به ازای ۶۴ خانه شطرنج به او گندم دهد. بدین ترتیب که از یک دانه گندم برای خانه اول آغاز کند و به هر خانه شطرنج که رسید تعداد دانه های گندم را نسبت به خانه قبل دو برابر افزایش دهد. مثلاً برای روز چهارم پادشاه می بایست تعداد ۱۶=۲*۴ دانه گندم به مرد فاضل بدهد. مرد خردمند شرط کرد که در صورت عدم توانایی پرداخت این گندم ها از سوی پادشاه می باید تاج و تخت هندوستان را برای همیشه ترک کند. پادشاه نیز با کمال میل پذیرفت و در دل به بی خردی آن ناشناس خندید. مسلماً در روزهای اول مشکلی وجود نداشت. اما مشکل اصلی از آنجا شروع می شد که این اعداد به صورت شگفت آوری بزرگ می شدند. در روز دهم تعداد ۱۰۲۴=10^2 دانه گندم باید پرداخت می شد که تعداد زیادی نیست. اما روز بیستم تعداد قابل ملاحظه ای می شود یعنی ۵۷۶/۰۴۸/۱=20^2 دانه گندم. فکر می کنید وقتی که به روز آخر یعنی خانه شصت و چهارم برسید چه اتفاقی بیفتد. درست حدس زده اید پادشاه ما به ....=64^2 دانه گندم نیاز دارد که این تعداد گندم با تمام دانه های شن و ماسه موجود بر روی زمین برابری می کند! در روزهای آخر این شرط تازه پادشاه هند متوجه شد که چه کلاه بزرگی سرش رفته است اما چاره ای جز کناره گیری از تاج و تخت نبود!مثال های بسیاری از این دست موجود است که به قدرت شگرف اعداد و بیشتر از آن به قدرت تفکر انسان هایی که راه سود بردن از آن را بدانند اشاره می کند.
معماهای جالب ریاضی
=============
- بازی شطرنج باچند نفر به طور هم زمان :
پسربچه ای به نام علی را در نظر میگیریم که در دبستان درس میخواند و استعداد ریاضی فوق العاده ای دارد ولی بازی شطرنج را بتازگی آغاز کرده و تنها می داند مهره ها را چگونه باید حرکت داد . در عوض 2 فرد دبیرستانی به نامهای محسن و حسن ، افرادی هستن که امیدهای بزرگی برای شطرنجند و شطرنج بازان بزرگ آنها را می شناسند و برای پیروزی به آنها ارزش قایلند .وقتی این سه نفر دور هم جمع بودند و در مورد شطرنج صحبت میکردند محسن و حسن روایت کردند که چگونه استادان بزرگ شطرنج بدون هیچ زحمتی با 40 تا 50 نفر به طور هم زمان شطرنج بازی می کنند .علی بلافاصله گفت : من همین حالا حاضرم در مقابل 2 نفر به طور هم زمان شطرنج بازی کنم ، نمی خواهید با من بازی کنید ؟؟
محسن و حسن مات و مبهوت شدند که چگونه یک بچه دبستانی ، که تازه با حرکت مهره ها آشنا شده به خود جرات میدهد تا 2 شطرنج باز قوی و پر تجربه را به مبارزه دعوت کند .علی پیشنهاد کرد تنها اجازه بدهید نحوه انتخاب مهره ها برای بازی با من باشد.اما حسن قبول نکرد و مهره خود را انتخاب کرد و بعد علی انتخاب کرد و بعد محسن انتخاب کرد . محسن گفت : علی عزیز ، اگر تو بتوانی دست کم در برابر یکی از ما 2 نفر شکست نخوری من حاضرم کلاه خودم را بخورم .در پایان مبارزه خطری جدی کلاه محسن را تهدید میکرد و تنها بعد از آن که علی از قرار اولیه و حق خود صرف نظر کرد ، کلاه محسن سالم ماند و خود محسن از خورد آن معاف شد . علی چگونه توانست دست کم در یکی از بازیها از شکست خود جلوگیری کند ؟؟علی در بازی تکی با هر کدام از آن دو شکست میخورد اما حالا توانست یکی از آن دو را شکست دهد چگونه ؟؟در ضمن فرد چهارمی هم وجود نداشت که علی را راهنمایی کند !!!!!!!
جواب --> اون فقط کاری که میکرد این بود که حرکت هرکدام را برای دیگری انجام میداد ... یعنی در اصل اون فقط یک واسطه بود و از خودش حرکتی انجام نمی داد