خانه ی ریاضی مرودشت

دانشجوی ریاضی محض دانشگاه شاهد تهران

خانه ی ریاضی مرودشت

دانشجوی ریاضی محض دانشگاه شاهد تهران

ریاضی کاربردی

ریاضی کاربردی،محض و آنالیز ریاضی

«ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم»

ادامه مطلب...

ریاضی کاربردی،محض و آنالیز ریاضی

«ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم»

ریاضی یکی از قدیمی ترین و پایه ای ترین رشته های علوم است . ریاضی دانان از نظریه های ریاضی , روشهای محاسبه , آلگوریتمها و آخرین دستاوردهای رایانه ای برای حل مسائل اقتصادی , علمی , مهندسی , فیزیک و تجاری استفاده می کنند. کار ریاضی دانان به دو بخش گسترده تقسیم می شود . ریاضی محض و ریاضی کاربردی . این دو گروه کاملا از یکدیگر قابل تمایز نبوده و اغلب با یکدیگر همپوشانی دارند.

ریاضی دانان محض (نظری) با گسترش مبانی جدید و تشخیص روابط کشف نشده میان قوانین موجود ریاضی باعث گسترش دانش ریاضی می شوند . اگرچه آنان به دنبال گسترش دانش پایه بوده بی آنکه لزوما موارد کاربردی آنرا بررسی کنند ، چنین دانش مطلقی , نوعی راهبرد مفید در ایجاد و پیشبرد بسیاری از دستاوردهای مهندسی و علمی بوده است.

بسیاری از ریاضیدانان محض به عنوان استاد در دانشگاه ها استخدام شده و زمان کاری خود را بین تدریس و امور تحقیقی تقسیم می کنند.

از طرف دیگر، ریاضی دانان کاربردی با بهره گیری از نظریات و روشهای ریاضی مانند روشهای محاسبه و مدل سازی ریاضی به فرمولبندی و حل مسائل عملی در امور تجاری , دولتی , مهندسی و درعلوم اجتماعی، فیزیک و امور مربوط به زندگی می پردازند . به  عنوان مثال , برای برنامه ریزی درخطوط هوایی میان شهر ها , بررسی اثر ومیزان ایمنی داروهای جدید , خصوصیات آیرودینامیکی پیش مدل اتومبیل ها و مقرون به صرفه بودن روشهای دیگر تولید به تجزیه و تحلیل کار آمدترین راه می پردازند.

امکان دارد ریاضی دانان کاربردی که دست اندر کار تحقیق و گسترش صنعتی هستند با حل مسائل مشکل باعث ایجاد یا تقویت روشهای ریاضی شوند .گروهی از ریاضی دانان به نام رمزیاب به تجزیه و تحلیل و کشف سیستمهای رمزی می پردازند که به صورت کد بوده و از طریق آنها اطلاعات نظامی , سیاسی , مالی یا اجرایی و قانونی رد و بدل می شود.

ریاضی دانان کاربری با یک مساله کاربردی شروع کرده , اجزای تفکیک شده عملیات مورد نظر را در فکر مجسم می کنند و سپس اجزا را به متغیر های ریاضی تبدیل می کنند.

ریاضی دانان غالبا با نمونه سازی توسط راه حلهای فرعی ، بوسیله رایانه به تجزیه و تحلیل روابط میان متغیرها و حل مسائل پیچیده می پردازند.

قسمت اعظم کار در ریاضی کاربردی به وسیله افراد با عنوانی غیر از ریاضی دان انجام می شود . در حقیقت ، از آنجائیکه ریاضی شالوده ایست که بر اساس آن بسیاری ازرشته های علمی بنا می شود شمار افرادی که از فنون ریاضی بهره می گیرند بیشتر از کسانیست که رسما" به عنوان ریاضی دان شناخته میشوند . به عنوان مثال , مهندسان , دانشمندان علوم رایانه , فیزک دانان و اقتصاد دانان از جمله کسانی هستند که به شکل وسیعی از علم ریاضی بهره می جویند. گروهی از افراد متخصص مانند آماردانان , آمارگیران , تحلیل گران محقق در عملیات , در حقیقت در شاخه خاصی از ریاضی متخصص می باشند . بسیار پیش میاید که ریاضی دانان کاربردی برای دستیابی به راه حلهایی در مسائل گوناگون با افراد دیگر شاغل در سازمان همکاری کنند .

محیط کار ریاضی دانان غالبا"در دفاتر راحت کار میکنند. آنها اغلب جزئی از یک تیم متشکل از متخصصین علوم مختلف که ممکن است شامل اقتصاددانان , مهندسان , دانشمندان علوم رایانه ای , فیزیک دانان , تکنسین ها و دیگر افراد باشد .تحویل به موقع  پروژه ها , اضافه کاری , تقاضاهای خاص برای اطلاعات یا تجزیه و تحلیل و مسافرتهای طولانی به منظور شرکت در سمینارها یا کنفرانسها جزئی از شغل آنان محسوب می شود .

ریاضی دانانی که در دانشگاهها مشغول به کارند معمولا"در زمینه تدریس و تحقیق مسئولیتهایی بر عهده دارند. این افراد اغلب یا به تنهایی امور تحقیقاتی را اداره می کنند و یا ازهمیاری دانشجویان فارغ التحصیل و علاقه مند به موضوعات تحقیقی بهره مند می شوند.

اهداف گرایش‌های مختلف این رشته عبارتنداز:

1- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامه‌ریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.

2- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدل‌سازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.

3- آموزش ریاضی: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیش‌دانشگاهی باشند.

معرفی مختصری از درسهای تخصصی گرایش ریاضی کاربردی

ریاضیات گسسته: هدف از این درس، آشنایی با زمینه‌های مختلف ریاضیات گسسته و کاربردهای آن با تاکید بر اثبات و ارائه الگوریتمهای مناسب است. سرفصلهای این درس عبارتند از : معادله تفاضلی و رابطه بازگشتی ، تابع مولد، اصل شمول و طرد، گراف و ماتریس، تطابق و دیگر کاربردهای گراف، جبربول و کاربردهای آن و آشنایی با طرحهای

بلوکی، مربع لاتین، صفحه‌های تصویری ، کدگذاری و رمزنگاری.

برنامه‌سازی پیشرفته : در این درس، دانشجویان به مباحثی همچون برنامه‌سازی صحیح ،‌ مستند سازی برنامه‌ها ، برنامه‌سازی ساخت یافته، آشنایی با زبان دوم برنامه‌سازی و مقایسه آن با زبان اول، اشکال‌زدایی و آزمایش برنامه، حصول اطمینان از صحت برنامه‌ها ، الگوریتمهای غیر عددی شامل : پردازش رشته‌ها، روشهای جستجو و مرتب کردن

، آشنایی مقدماتی با کامپایلرها و دیگر برنامه‌های مترجم، اجرای طرحهای بزرگ و ...

می‌پردازند.

آنالیز عددی: هدف از این درس، ارائه الگوریتمهای عددی و بررسی خطاهای ایجاد شده از حل عددی مسائل است. در خصوص روشهای تکراری، بررسی همگرایی و نرخ همگرایی نیز مورد تاکید می‌باشند. در این درس سرفصلهای موجود عبارتند از : نمایش اعداد حقیقی، انواع مختلف خطاها، آنالیز خطاها ، حل معادلات خطی، مشتق و انتگرال‌گیری عددی و حل معادلات دیفرانسیل عددی و ... .

ساختمان داده‌ها: در این درس، دانشجویان با آرایه‌ها ، بردارها، ماتریسها ، صفها و ردیفا، لیستهای پیوندی ، خطی، حلقوی ، روش نمایش و کاربرد لیستهای پیوندی ، درختها و پیمایش‌ آنها، روش نمایش و کاربرد درختها، درختهای تصمیم‌گیری ، گرافها و نمایش آنها، تخصیص حافظه به صورت پویا و مسائل مربوط آشنا می‌شوند.

تحقیق در عملیات: در این درس ، دانشجویان با زمینه تحقیق در عملیات، انواع مدلها و مدلهای ریاضی، برنامه‌ریزی خطی، شبکه‌ها و مدل حمل و نقل، سایر مدلهای مشابه، آشنایی با برنامه‌ریزی متغیرهای صحیح ،‌برنامه‌ریزی پویا، برنامه‌ریزی غیرخطی و مدلهای احتمالی آشنا می‌گردند.

بطور کلی دقت ،‌تجزیه و تحلیل صحیح و صبر و پشتکار سه عامل اصلی در توفیق داوطلب در این رشته می‌باشد.

آنالیز شاخه ای از ریاضیات است که با اعداد حقیقی و اعداد مختلط و نیز توابع حقیقی و مختلط سر و کار دارد و به بررسی مفاهیمی از قبیل پیوستگی، انتگرال گیری و مشق پذیری می پردازد. از نظر تاریخی آنالیز در قرن هفدهم با ابداع حساب دیفرانسیل و انتگرال توسط نیوتن و لایپ نیتس پایه ریزی شد. در قرن هفدهم و هجدهم سر فصل های آنالیزی از قبیل حساب تغییرات، معادلات دیفرانسیل با مشتقات جزئی، آنالیز فوریه در زمینه های کاربردی توسعه فراوانی یافتند و از آنها به طور موفقیت آمیز در زمینه های صنعتی استفاده شد. در قرن هجدهم تعریف مفهوم تابع به یک موضوع بحث بر انگیز در ریاضیات تبدیل شد.

در قرن نوزدهم کوشی با معرفی مفهوم سری های کوشی اولین کسی بود که حساب دیفرانسیل و انتگرال را بر یک پایه منطقی استوار کرد. در اواسط قرن نوزدهم ریمان تئوری انتگرال گیری خود را که به انتگرال ریمان معروف است ارائه داد، در اواخر قرن نوزدهم وایراشتراس مفهوم حد را معرفی کرد و نتایج کار خود بر روی سریها را نیز ارائه داد، در همین دوران ریاضیدانان با تلاش های زیاد توانستند انتگرال ریمان را اصلاح نمایند.

در اوایل قرن بیستم هیلبرت برای حل معادلات انتگرال فضای هیلبرتی را تعریف و معرفی نمود. از آخرین تحولات در زمینه آنالیز می توان به پایه گذاری آنالیز تابعی توسط یک دانشمند لهستانی به نام باناچ نام برد .

آنالیز به دسته های زیر تقسیم بندی می شود :

آنالیز حقیقی: به مطالعه بر روی حد ها، مشتقات، انتگرال ها سریهای توانی می پردازد

آنالیز تابعی: به معرفی نظریه هایی از قبیل فضاهای باناچ و نیز فضای هیلبرت می پردازد

آنالیز هارمونیک: در این شاخه از آنالیز سری های فوریه مورد مطالعه قرار می گیرد

آنالیز مختلط: به بررسی توابع مختلط و خواص این توابع از قبیل مشتق پذیری و انتگرال گیری می پردازد

آنالیز عددی: آنالیز عددی الگوریتم حل مسئله در ریاضیات پیوسته(ریاضیاتی که جدا از ریاضیات گسسته است) را مورد مطالعه قرار میدهد.

آنالیز عددی اساسا به مسائل مربوط به متغیرهای حقیقی و متغیرهای مختلط و نیز جبر خطی عددی به علاوه حل معادلات دیفرانسیل و دیگر مسائلی که از فیزیک و مهندسی مشتق میشود. تعدادی از مسائل در ریاضیات پیوسته دقیقا با یک الگوریتم حل میشوند. که به روش های مستقیم حل مسئله معروف اند. برای مثال روش حذف گائوسی برای حل دستگاه معادلات خطی است و نیز روش سیمپلکس در برنامه ریزی خطی مورد استفاده قرار میگیرد. ولی روش مستقیم برای حل خیلی از مسائل وجود ندارد و ممکن است از روشهای دیگر مانند روش تکرارشونده استفاده شود، چون این روش میتواند در یافتن جواب مسئله موثرتر باشد.

تخمین خطاهای موجود در حل مسائل از مهمترین قسمت های آنالیز عددی است این خطاها در روش های تکرار شونده وجود دارد چون به هرحال جوابهای تقریبی بدست آمده با جواب دقیق مسئله، اختلاف دارد و یا وقتی که از روش های مستقیم برای حل مسئله استفاده می شود خطاهایی ناشی از گرد کردن اعداد بوجود می آید. در آنالیز عددی می توان مقدار خطا را در خور روش که برای حل مسئله به کار می رود، تخمین زد. الگوریتم های موجود در آنالیز عددی برای حل بسیاری از مسائل موجود در علوم پایه و رشته های مهندسی مورد استفاده قرار می گیرند. برای مثال از این الگوریتم ها در طراحی بناهایی مانند پل ها، در طراحی هواپیما ، در پیش بینی آب و هوا، تهیه نقشه های جوی از زمین، تجزیه و تحلیل ساختار مولکول ها، پیدا کردن مخازن نفت، استفاده می شود، همچنین اکثر ابر رایانه ها به طور مداوم بر اساس الگوریتم های آنالیز عددی برنامه ریزی می شوند. به طور کلی آنالیز عددی از نتایج عملی حاصل از اجرای محاسبات برای پیدا کردن روش های جدید برای تجزیه و تحلیل مسائل، استفاده می کند.

وضعیت نیاز کشور به این رشته در حال حاضر:

دکتر بابلیان معتقد است هر وزارتخانه یا شرکتی نیاز به افرادی دارد که علاوه بر دانستن الفبای کامپیوتر، دارای توانایی تجزیه و تحلیل و تصمیم‌گیری مناسب باشند. در این زمینه شرکتها می‌توانند فارغ‌التحصیلان ریاضی محض و یا کاربردی را جذب نمایند.

رشته‌های مختلف ریاضی جایگاه وسیعی در جامعه دارند از آن جمله : تمام رشته‌های مهندسی ، رشته‌های مختلف علوم پایه (فیزیک ، شیمی ،‌زیست‌شناسی، زمین شناسی)، پزشکی، علوم کامپیوتر، اکتشافات فضایی،‌ بازرگانی، برنامه‌ریزیهای دولتی، غالب رشته‌های وابسته به صنعت ، مدیریت و رشته‌های مختلف کشاورزی به رشته ریاضی وابسته‌اند و از آن به طور مستقیم استفاده می‌کنند؛‌ همچنین بخش بزرگی از فعالیتهای اقتصادی و تولیدی کشور در طرحهای مختلف نظیر: نفت ، پتروشیمی، حمل و نقل و ... ، مستقیم و یا غیرمستقیم از ریاضی استفاده می‌کنند.

گرایشهای مختلف مقاطع کارشناسی ارشد و دکتری فارغ‌التحصیلان مقاطع کارشناسی ریاضی کاربردی می‌توانند در مقاطع کارشناسی ارشد در گرایشهای مختلف: تحقیق در عملیات ، آنالیز عددی ، بهینه سازی و نظریه کنترل به تحصیل ادامه دهند. فارغ‌التحصیلان کارشناسی ریاضی محض و دبیری می‌توانند در مقاطع کارشناسی ارشد در گرایشهای مختلف آنالیز ریاضی، جبر، هندسه و معادلات دیفرانسیل ادامه تحصیل دهند. در هر یک از گرایشهای یاد شده زیر شاخه‌های تخصصی‌تری وجود دارد که در مقطع دکترای تخصصی (P.h.D) و نیز در رساله دکتری به آن پرداخته می‌شود.

بیشترین فرصتهای شغلی در سرویسهای تحقیقی و آز مایشی , آموزشی , امنیتی , سیستمهای تبادل کالا ، مدیریتی و روابط عمومی وجود دارد . دربین مراکز تولیدی ،  صنایع هوا فضا و دارویی اصلیترین استخدام کننده ها میباشند . گروهی از ریاضی  دانان نیزدر بانکها و یا شرکتهای بیمه مشغول به کارند.

آموزش و ادامه تحصیل بسیاری از فرصتهای شغلی که در کارهای پژوهشی برای ریاضیدانان در نظر گرفته میشود بصورت عضوی از یک تیم حرفه ای می باشد . دانشمندان محقق در چنین مشاغلی یا در زمینه تحقیقات پایه و مبانی نظری و یا در تحقیقات عملی برای ایجاد یا بهبود فرایند تولید مشغول به کار می شوند . اکثر افرادی که دارای مدرک

لیسانس یا فوق لیسانس بوده و در صنایع خصوصی کار میکنند , نه به عنوان ریاضی دان بلکه بعنوان برنامه نویس رایانه , تحلیل گر سیستم یا مهندس سیستم رایانه ای مشغول به کارند.

دوره های ریاضی مورد نیاز این مدرک شامل حساب دیفرانسیل , معادلات تفاضلی و جبر   خطی و انتزاعی می باشد . دوره های اضافی میتواند نظریه های احتمالات و آمار , آنالیز ریاضی , آنالیز عددی , توپولوژی , ریاضیات گسسته و منطق ریاضی را در برگیرد .

بسیاری از دانشگاه ها برای دانشجویانی که در رشته ریاضی تحقیق می کنند , در زمینه رشته های مربوط به ریاضی مانند علوم رایانه ای , مهندسی , فیزیک و اقتصاد دوره هایی بر گذار می کنند . برای بسیاری از کار فرمایان ,آگاهی همزمان در ریاضی و علوم رایانه ای , اقتصاد یا دیگر علوم نوعی مزیت محسوب می شود . یک محصل ریاضی

آینده نگر باید تا جایی که امکان دارد بسیاری از دروس ریاضی را در دبیرستان  بیاموزد .

در مورد ریاضیات کاربردی آموزش دیدن در زمینه هایی که قرار است ریاضی در آن به کار برده شود بسیار مهم است . ریاضی به شکل وسیعی در علوم فیزیک ,آمار , مهندسی  مورد استفاده قرار می گیرد . علوم رایانه ای , تجاری , مدیریت صنعتی, اقتصاد ,امور مالی , شیمی , زمین شناسی , علوم روزمره و اجتماعی وابسته به ریاضی کار بردی

می باشند . ریاضی دانان باید در زمینه برنامه نویسی رایانه ای از اطلاعات جامعی برخوردار باشند چرا که اکثر محاسبات ریاضی پیچیده و مدل سازی ریاضی بوسیله رایانه  انجام می شود.

ریاضی دانان نیاز به قدرت استدلال خوب و مداومت برای تشخیص ، آنالیز و به کار  بردن مبانی ریاضی در مسائل فنی دارند . مهارتهای ارتباطی مهم می باشد چرا که ریاضی دانان بایستی در زمینه راه حلهای مطرح شده با افرادی وارد بحث شوند که  احتمالا" اطلاع کافی ازعلم ریاضی ندارند.

چشم انداز

انتظار می رود که در آینده از میزان استخدام افراد به عنوان ریاضی دان کاسته شود   چرا که مشاغل اندکی با نام علم ریاضی وجود خواهد داشت . هر چند دارندگان مدرک PHD و فوق لیسانس با اطلاعات جامعی در زمینه ریاضی و علوم مربوطه مانند مهندسی یا  علوم رایانه ای احتمالا از فرصتهای شغلی مطلوب تری برخوردار خواهند بود . با این حال , بیشتر این افراد به جای عنوان ریاضی دان از عنوان کاری بر خوردار می شوند که نمایانگر شغل آنان می باشد . پیشرفت تکنولوژی معمولا باعث گسترش کاربرد علم ریاضی می شود و در آینده به افرادی که در این رشته مهارت یابند نیاز پیدا خواهیم کرد . با این وجود افرادی که در امور صنعتی یا دولتی مشغول به کار می شوند علاوه بر علم ریاضی در علوم مربوطه نیز به دانش پیشرفته ای نیاز خواهند داشت ریاضی دانان برای یافتن شغل باید با افرادی رقابت کنند که در علوم مربوط به رشته ریاضی تخصص دارند . موفق ترین جویندگان کارکسانی هستند که می توانند مبانی ریاضی را در مسائل واقعی زندگی بکار برده و از مهارتهای ارتباطی ,گروهی و رایانه ای مطلوبی بهره مند هستند .

در صورت نیاز سازمان آموزش و پرورش , اکثر دارندگان مدرک لیسانس می توانند به عنوان دبیر در مدارس مشغول بکار شوند.

رقابت کاری در میان دارندگان مدرک فوق لیسانس و در امور تحقیقی و نظری بسیار بالاست . از آنجایی که اکثر مشاغل دانشگاهی در اختیار دارندگان مدرک PHD است , لذا بسیاری از فارغ التحصیلان رشته ریاضی , بدنبال استخدام در مشاغل دولتی یا صنعتی می باشند

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد